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It is certainly a great honour and privilege for me to address the banquet of  the 
Third International Mathematical Chemistry Conference, and - at the same time - it is 
very difficult, since there are so many themes one could speak about. Today, I have 
chosen to speak about the different roles of mathematics in theoretical chemistry in 
general and in mathematical chemistry as defined as the topic of this conference. 

In memory of Oskar Polansky 

Before I start, I would like to say a few words in memory of  our esteemed 
colleague, Professor Oskar Polansky, who was one of the outstanding pioneers in the 
field of mathematical chemistry. I first met him when he attended the four-week 1959 
Uppsala Summer Institute in Quantum Chemistry and Solid-State Theory at Lidingö 
outside Stockholm, and he was then a young enthusiastic professor in Vienna, Austria. 
The institute had many outstanding participants - including Roald Hoffman - but, for 
some reason, Oskar Polansky was selected by the participants as their spokesman and 
leader. He obviously had an unusually warm personality and a natural talent for 
leadership, and thanks to the fine interaction with him, the qualitY of the institute could 
be greatly improved. I had also the privilege of  visiting him as a guest lecturer in 
Vienna, and - on this occasion - I learnt about his immense hospitality. Some years 
later, I was assigned to the little site committee - "Fachbeirat" - which periodically 
evaluated the research at the Max-Planck Institute for Radiation Chemistry at Mülheim 
an der Ruhr in West Germany, and I leamt about the exceUent research done 
by Oskar Polansky and his group there, and about his intense international collaborafion 
- particularly with Vienna and the Bulgarian Academy of  Science. In spite of  the warm 
recommendations by the site committee to continue the research project in theoretical 
chemistry in Mülheim even after Oskar's retirement, the leadership of the German Max- 
Planck Institute decided otherwise, and this also means that the fine journal caUed 
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Match, which he strongly sponsored, probably has to find a new home in the fumre. 
Oskar Polansky was not only an oukstanding scientist, but also an unusually fine human 
being with far-reaching interests, and his death in the middle of  January 1989 was a 
great loss for science and mankind. We will miss him. At the same time, his fine 
scientific results will always stay alive among us. 

Mathematics in chemistry 

Let us admit that mathematics has seldom been really popular among chemists 
in general, and this is probably best illustrated by the quotation from Comte given by 
Josef Paldus in his fine lecture at this conference. Still, it is very difficult to carry out 
chemical experiments without having some idea or "theory" in mind, and it is obvious 
that it would be highly desirable to explain all the various phenomena occurring in 
chemistry by means of some simple unifying principles. The modem chemists are 
highly skillful mathematicians and computer experts, as is weh illustrated by the work 
in crystallography by Jerome and Isabella Karle and Herbert Hauptman. Still, it needs 
to be emphasized that much more good mathematics is needed in the field of theoretical 
chemistry. 

At one of the early Sanibel conferences, Professor John C. Slater made the strong 
statement that any violation of mathematics could not only give you excellent agree- 
ment between theory and experiment, but also that you could prove almost anything. At 
the luncheon after his lecture, 1 remember that we were standing in line for the salad 
when a senior colleague came up to Slater and said: "Il  you would be t~rmitted to make 
wrong rounding-off errors in the sixteenth decimal, could you prove that you are the 
Pope?" Slater thought for a few seconds, and then came his reply: "If  +0.5 x 10 16 
= -0 .5  x 10 16, one could multiply by 2 × 1016 and ger +1 = -1 ,  4 = 2, and 2 = 1. 
Multiplying by C and P, respectively, one would have the two relations 2C = C and 
P = 2P,  as weh as 2C + P = C + 2P and C = P. If C is Jotm C. Slater and P the Pope, 
I would certainly be the Pope". Even i f there may be some logical objections against this 
type of  reasoning, the senior colleague was certainly astounded and went away to 
contemplate the consequences. 

I remember that, in the Uppsala group in the early 1960's, we had a special one- 
lecture course called "How to ger good resulL,; without actually cheating". A typical 
example could be lound in the theory of the intensities of spectral lines, where one could 
use coordinate, velocity, or acceleration formulas for the transition moment, which 
would give the same results in the exact theory but usually different results in an 
approximate theory. However, in the latter case one could - for instance - multiply the 
coordinate formula by Xl and the velocity formula by X2" As long as Xl + X2 = 1, the 
formula gives the correct result in the exact theory, and by giving one of  the )~'s the 
proper value, it will give the correct result also in the approximate theoo,. This is a one- 
parameter formula, and by studying its behaviour for, e.g., a series of  related molecules, 
one may be able to interpolate or extrapolate the transition moments in the seiles. 
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However, the main purpose of  this course was really to teach the students that they 
should never be impressed by good agreements with experiments alone. Excellent 
agreement between theory and experiment is certainly a necessary condition for the 
goodness of  a theory, but it is by no means a sufficient condition. An exact theory should 
be internally consistent and have no adjustable parameters, and it should be able to 
explain not only the existing experimental data but also to make predictions. It is 
certainly true that most of the current theoretical chemistry could be improved by 
strengthening its mathematical background, and the only question is how this should be 
done. 

Structure of mathematics and deductive theories 

Mathematics has a very different structure from chemistry, since it deals with 
concepts and not experiments. Mathematics is deductive in the sense that any part of it 
starts from a seiles of  axioms, which are chosen as building blocks of the theory and 
only have to fulfill the conditions that they should be non-contradictory and non- 
redundant. In addition, there may be a seiles of concepts which are not defined by the 
axioms - such as, for example, the point, the straight line, and the circle in the Euclidian 
geometry - and which, in the abstract theory, am referred to as "undefined quantities" 
without any specific content. When one applies logic to the axioms, one obtains a seiles 
o f  theorems which are characteilstic for the abstract theory, which is still a content- 
less structure. The theory may be given a content by giving a definition or realization 
of  the "undefined quantities", and this leads to a model theory in which - in addition to 
the theorems of the abstract theory - one may have model-dependent theorems. It is 
interesting to observe that, if there are different realizations of  the "undefined quanti- 
ties", one may have model-dependent theorems which are true in orte model but false 
in another. If such theorems can be meaningfully formulated also in the abstract theory, 
which is orten the case, they are examples of theorems which cannot be proven to be 
true or false within the framework of the abstract theory, and which are, hence, 
examples of  Gödelian theorems. 

In theoretical chemistry, one should observe that the physical observables - such 
as, for example, the coorclinate x and the momentum p - in the original formulation of 
modern quantum theory [1] may be considered as "undefined quantities" in the sense 
of  mathematics, which were given three different realizations by the great pioneers: they 
were interpreted as operators by Schrödinger, as matrices by Heisenberg, Bom, and 
Jordan, and as q-numbers by Dirac. So far, the results to be compared with experiments 
within the three realizations have been essentially identical. 

Another feature of  mathematics is that it is historically built up by orte building 
block after another, that every new paper makes reference to all the previous papers, and 
that a professional mathematician has to know the content of all these p a a r s  within a 
specific field. Most chemists would prefer to see a condensed review on how one may 
understand the last paper in the chain without going through all the previous papers. 
Even though such reviews are highly valuable, they are not easily produced. It should 
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also be observed that there are several levels of mathematical proofs: the symbolic or 
intuitive proofs, which give a certain insight into the structure of the theory and some 
of its most important theorems as conjectures, the strict proofs, which convince any 
reasonable reader, and the rigorous proofs, which should convince even the most 
doubtful ones. The latter usuaUy requires a great deal of space, and most chemists would 
probably feel satisfied with the intuitive proofs put into a somewhat more strict frame- 
work. 

Structure of theoreticai chemistry 

Let us now briefly review the structure of the field of theoretical chemistry. As 
I said before, the main purpose of the theory is to explain the enormous number of 
various chemical phenomena occurring in experiments, in technology, and in industry, 
etc., by means of a few unifying principles. If one selects a specific sector of experi- 
ments, the best type of theory may be a "rule of thumb", which may be used to construct 
new experiments and to make certain predictions. The next level of theory are the semi- 
empirical theories, where orte set of experimental data through the theory are able to 
predict another set of experimental data. The next level of theory are the deductive ones, 
which have a more mathematical structure: one starts from a series of axioms or basic 
assumptions, and by applying logic and mathematics orte derives a series of theoretical 
results, which may then be compared with the corresponding experimental results. If the 
agreement is good, one may be satisfied and try to use the theory for predictions. If the 
agreement is not so good, one tries to go back and modify the basic assumptions and 
repeats the entire cycle, until one reaches the agreement desired. One of the great 
teachers and pedagogues of theoretical chemistry is Professor F.A. Matsen hefe in the 
audience, and he used to cleverly describe this pragmatic approach as "the six steps to 
chemical insight". A fine example of this iterative approach has been given at this 
conference by Mark Johnson, Eric Gifford, and Chung-che Tasai in their study of 
models for metabolic pathways. 

Since the time of Heitler and London [2], one has had good reason to believe that 
the unifying principle in theoretical chemistry would be provided by modern quantum 
theory, and Dirac's famous 1929 statement about the laws underlying chemistry has 
already been quoted at this conference. It should be observed, however, that pure 
quantum mechanics based on ware functions describes only systems at absolute zero 
temperature, and that, in theoretical chemistry, orte needs the more general quantum 
theory based on the concept of ensembles as described by J. von Neumann [4]. This 
theory treats also the statistical mechanics of interacting particles, as weh as the 
approach to equilibrium. This approach has been illustrated at this conference by the 
beautiful lecture by Michael Fisher about the statistical mechanics of membranes and 
vesicles in molecular biology. 

Let us now retum to pure quantum mechanics. In order to solve the time- 
dependent Schrödinger equation, as well as the eigenvalue problem associated with the 
time-independent Schrödinger equation, one needs many valuable tools from pure 
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mathematics: particulafly the theory of solution of partial differential equations of first- 
and second-order of a large number of variables. A nice application of the theory of 
differential equations was given here in the lecture by Cafl Wulfman. The standard 
solution today of the time-dependent problem involves the use of evolution operator 
techniques. 

As to the eigenvalue problem, the main tool for finding approximate solutions 
seems to be the Rayleigh-Ritz variation principle [3], and it is even today the main 
basis for the various computational techniques. However, there are also many important 
results which can be obtained without numerical calculations, and which are connected 
with the constants ofmotion of the Hamiltonian under consideration. Since the unitary 
constants of motion always form a group, they are conveniently handled by group 
theory involving the symmetric group, the point groups, as well as the unitary group 
itself. The importance of the unitary group has been nicely demonstrated at this con- 
ference in the lectures by Josef Paldus and A1 Matsen - by the latter in connection with 
the Hubbard model. The groups form a natural tool for the classification of states, but 
today they are also of importance in the pure computational schemes - like GUGA - 
and I will return to this later. 

Graph theory 

Many years ago, at a Sanibel Symposium, Milan Randi6 convinced me that the 
natural tool for the classification of all the isomers of the organic hydrocarbons would 
be graph theory, and in these efforts he has over the years been strongly supported at 
the Sanibel conferences by Leo Klasin6 and Nenad Trinajsti6. Since then, we have 
published many important papers on chemical graph theory in the International Joumal 
of Quantum Chemistry (IJQC). A few years later, I received a nice letter from Professor 
Frank Harary - Editor of the Joumal of Graph Theory (JGT) - who pointed out that not 
all the graph theory papers published in IJQC were of sufficiently high mathematical 
quality and offered to serve as an additional mathematical referee, if we so desired. 
Since Professor Harary is present in the audience, I would like to take this opportunity 
to thank him for his effort to improve the quality of IJQC. In this connection, I wrote 
to Milan and suggested that, in the future, the main bulk of the papers in pure graph 
theory should perhaps be submitted to JGT. 

There have been many nice papers on graph theory and related subjects presented 
at this conference by Soteros, Janse, van Rensburg, Hemdon, Rouvray, Sumners, King, 
Klasin6, Poshusta, Kiang, Harary, Dias, Trinajsti6, and others. They are all character- 
ized by the fact that the chemical formulas for the hydrocarbons are represented by 
graphs, which are labelled by matrices which also arise in the Hückel approach or in the 
molecular-orbital methods in general. These graphs or matrices have different invari~ 
ants, such as the characteristic polynomial or its eigenvalues. There are, apparently, 
chemical formulas which have the same invariants and which have to be distinguished 
in other ways. In this connection, I wonder whether there are any structural formulas 
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which are not represented by Hermitian matrices and which have mulüple eigenvalues 
characterized by the orders of the Jordan blocks involved, i.e. by the so-called Segr6 
characteristics. 

I was deeply impressed by the aesthetical beauty of the concealed non-Kekuléan 
graphs presented by Cyvin, and by the powerful theory developed by Hosoya. It is 
evident to me that most of the molecules represented by these graphs will never be 
chemically synthesized, and sometimes I wonder how many could be synthesized, at 
least in principle. Then I realize that, at least for the moment, this is a rather irrelevant 
question at this part of the conference, which has more emphasis on the graphs them- 
selves than on chemistry. It should still be remembered, however, that many of the 
results obtained one day could be highly useful in making predictions about the stability 
of certain chemical structures. I was also fascinated by the theory of knots and entangle- 
ments, and - even if my own practical experience in this field is limited to the handling 
of ropes in sailing and mountaineering - I realize that one day it may be of essential 
value in the treatment of the folding and tertiary structure of proteins and nucleic acids 
of importance in understanding their structure-activity relationship. 

Mathematical foundation of modern quantum chemistry 

Let us now retum to the eigenvalue problem and its formulation in terms of the 
Rayleigh-Ritz variation principle. The equivalence of the three formulations of modern 
quantum theory is best illustrated by the theory of the abstract Hilbert space as 
formulated by Jormy von Neumann [4]. It is perhaps interesting to observe that, in 
current molecular theory based on a Coulombic Hamiltonian, the problem is usually 
formulated in terms of the wave mechanics due to Schrödinger, whereas the computa- 
tional problem is solved in terms of matrices and vector calculus of the type introduced 
by Heisenberg, Bom, and Jordan. The alphabetic symbols HF, MCSCF, CI, GUGA, 
CC-MBPT . . . .  characterize various approximation schemes which are currently in use 
over all the world and are solved by means of various types of computers. I will retum 
to the computational problem later. 

All these computational schemes are based on Hilbert space methods, and Hans 
Primas in Zürich has pointed out that it is conceptually difficult to generalize these 
methods to systems with an infinite number of degrees of freedom - as, for example, 
in radiation theory - and that one may instead have to resort to the modern algebras 
constructed in mathematics, particularly the C*- and W*-algebras. In this beautiful 
abstract approach to theoretical chemistry, the main problem is then how one should 
practically perform the necessary computations. 

Some interesting topological properties of Banach spaces having a norm with no 
corresponding binary product have been pointed out here by Ernst Ruch, and we are 
looking forward to the applications in theoretical chemistry. 

Schrödinger proved by partial integration that the Coulombic Hamiltonian for a 
system of atomic nuclei and electrons is Hermitian symmetric, but it would take until 
1951 before Kato [5] could rigorously prove that it is also essentiaUy self-adjoint. Even 
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if the proof is rather long, it is well worth studying. Even though the Coulombic 
Hamil tonianH is limited from below, it is still an unlimited operator, and this is one of  
the reasons why one instead often considers the resolvent operator R(z) = (z.l  - H) ~~, 
where z is a complex variable, and its kemel - the Green function - or the associated 
propagators. Connected with the msolvent methods is the partitioning technique and the 
infinite-order perturbation theory, as well as the theory of  the ware  and r,:action 
operators, which have played a fundamental role both in theoretical physics and in 
quantum chemistry. 

Some authors claim that the standard perturbation theory had an almost 
degenerating influence on theoretical physics, but - even if this may have been at least 
partly true - perturbation theory was finally given a strict mathematical foundation by 
Rellich [6] and by Karo [7]. Since then, there has been an enormous development of  this 
particular field in nuclear physics as well as in quantum chemistry, and at least part of  
the proofs is fairly strict. 

The Coulombic Hamiltonian describes a system of electrons and atomic nuclei, 
b u t -  since it does not assign the electrons to specific nuclei - it does not describe the 
atoms and molecules involved. Since this Hamiltonian is translationally and rotationally 
invariant, it is essenüal to separate the motion of its center of mass as well as the rotation 
o f  the system as a whole. Some of the topological and symmetry problems of the 
associated energy surface - as a function of  the nuclear coordinates involved - have 
been discussed at the conference by Paul Mezey, and some other general aspects 
by Klaus Ruedenberg and Michael Zerner. The long way from the Coulombic 
Hamiltonian to the electronic structure of  molecules has also K e n  discuss~d elsewhere 
by myself  [81. 

A few years ago, I agreed to give a lecture about the subject "The mathematical 
definition of  a molecule and molecular structure" at an international conference in Paris, 
in honour of  Professor Raymond Daudel [9]. In this cormection, I found that all 
calculations of  atomic and molecular ground states so rar carried out were based on the 
conjecture that, i fone  could t]nd an approximate trial function for which the expectation 
value of  the Coulombic H~uniltonian was Iower than the energy of  all possible separated 
clusters, then the system had a closed ground stare with a discrete energy. That this 
conjecture is really true is proven by the WHVZ theorem, named after Weyl, Hunziker, 
Van Winter, and Zhislin (see [9]). The theorem by Weyl from 1909 says - in modern 
language - that if one can find a trial function for which the exi~ctation value of  the 
Hamiltonian is below the bottom of the essential spectrum, then the system has a 
discrete ground state. It has taken a gmat deal of  work by mathematicians in the 1970's 
and 1980's to prove that the bottom of the essential spectrum of the Coulombic 
Hamiltonian corresponds to the lowest energy of  "all possible separated clusters, which 
represent scattering states with continuous spectra. There are, of  course, many examples 
of  Coulombic systems without a ground state, e.g. the system consisting of  one proton 
and three electrons. In connection with the WHVZ theorem, many important contri- 
butions have been made by Bar-ry Simon, Elliot Lieb, Erik Baslev, and others, and for 
a bibliography, the reader is referred to rel. [9]. 
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Numerical analysis 

Next, I would like to say a few words about the numerical analysis which is 
needed to prepare a problem for computation in theoretical chemistry. The numerical 
methods are part of  the field of applied mathematics, and a standard tool is the use of 
recursionformulas, which may sometimes be represented by matrix formulas or con- 
tinued fractions. In many graph-theoretical descriptions of, e.g. the characteristic poly- 
nomials, the associated recursion formulas have integer coefficients, and there are 
usually no problems. On the other hand, if one applies recursion formulas to approxi- 
mate numbers subject to rounding-off errors, there is a propagation of rounding-off 
errors, which may be either well-behaved or ill-behaved. In the latter case, the accumu- 
lation of rounding-off errors may increase exponentially, making the results completely 
meaningless. Some recursion fonnulas may be well-behaved in both directions, some 
are well-behaved in one direction and ill-behaved in the other, whereas, finally, some 
may be ill-behaved in both directions. A simple example is provided by the recursion 
formulas for the Bessel functions used in the 1950's for the calculation of molecular 
integrals, which are well-behaved in one direction and ill-behaved in the other. The 
blowing-up of the accumulation of rounding-off errors should not be confused with 
chaotic behaviour, which depends on the blowing-up of an exceedingly small error in 
the initial conditions of certain types of differential equations studied in mathematics. 

Some rccursion formulas are due to the fact that one replaces the original 
differential equations with central difference for-mulas of finite order, which are then 
associated with a formula error, and the propagation of this formula error through the 
recursion procedure then becomes a fundamental problem. It seems to be a rule that, if 
one tries to make the formula error very small, the recursion formula becomes very iH- 
behaved, and this means that one has to try to find a suitable balance. It is a well-known 
fact that the difference formulas used by astronomers to calculate the orbits of  the 
planets in classical mechanics to very high accuracy, in reality represent the first terms 
of a divergent seiles; still, they seem to be very useful. At this conference, Fred Wall 
has presented an interesting attempt to develop a discrete quantum theory by starüng out 
from the uncertainty relations and finite central difference formulas instead of the 
differential equations. 

The solution of certain equations, for instance x = f(x), may be found as 
limits of  recursion formulas carried to infinite order. Depending on the behaviour 
of the errors, one speaks of first-order procedures, second-order procedures, etc. 
We note that iteration procedures were classified already in 1870 by Schröder [10], 
who also gave recipes for improving the rate of convergence or for finding the 
solution in the case when the iteration procedure tums out to be divergent. In 
theoretical chemistry, iteration procedures are used, e.g. in solving the eigenvalue 
problem in the partitioning technique and in all the self-consistent-field (SCF) 
procedures. In my opinion, there is no question that numerical analysis is one of the 
most important tools in modern theoreücal chemistry, and that it can be even better 
utilized in the future. 
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Once the numerical analysis is successfully completed, it is time to start the 
computations. These are usually based on algorithms derived from numerical analysis, 
which may be programmed for various types of electronic computers. The programs are 
debugged during the pilot calculations and - when the test runs are successful - o n e  can 
proceed to production calculations and applications to various types of molecules. The 
first output may be a very large set of numbers, which has to be properly analyzed and 
"understood", and we note that today many important results are best illustrated by 
molecular graphics. Before one compares the theoreücal results with the corresponding 
experimental data, one may have to estimate the order of magmitude of any relativistic 
effects, since nature itself is inherently relativistic. If the agreement is good, one should 
try to predict other data which have not yet been measured, and also to make a physical 
and chemical interpretation of the theory. 

Computational theoretical chemistry and the development 
of the electronic computers 

During the last four decades, there has been an enormous development in the field 
of electronic computers, which has completely changed the life of theoretical chemists. 
The question is how dependent are we on the access to very large computers? In 1955, 
A1 Matsen arranged an international meeting on quantum chemistry in Austin, Texas, 
and the participants strongly recommended the acquisition of electronic computers for 
the various groups working in quantum chemistry all over the world. In 1958, I had the 
privilege of meeting the outstanding physical chemist, Professor Peter Debye in 
Houston, Texas, and he was then on the scientific advisory board of the Roben A. 
Weich Foundation. When I asked hirn for his opinion as to the usefulness of electronic 
computers, he answered: "If you are smart enough, you don't need them - and if you 
are not smart enough, you cannot handle them". When I met hirn quite a few years later, 
I asked him again for his opinion as to the giant electronic computers which had then 
become available to certain selected groups, and he answered simply: "If you have 
them, use them - if you don't have rhein, beat them." Even in the late 1960's, he 
obviously felt that brain power was superior to computer power, and that human 
intelligence was not utilized enough in this connection. 

I must admit that I deeply admire some of the giant calculations in graph theory 
reported at this conference, particularly Nenad Trinajsüß's efforts to link the super- 
computers together to calculate the number of graphs of a particular type, but I feel that 
Peter Debye would have been happier if one had simultaneously tried to carry out an 
analysis of  the problem leading to at least an approximate formula of asymptotic nature. 

Sometimes it is certainly worthwhile to carefully go through the theory and 
evaluate the efficiency of the various possibilities for calculations by numerical analysis 
before one starts the actual computations, and I will illustrate this situation by a simple 
example. In the theory of the symmetric group, the standard tools for calculating 
characters and irreducible representations were presented by Frobenius, hut - for higher 
orders - they are so complicated that they are only conveniently handled by electronic 
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computers. Professor John Coleman of Queen's University, Kingston, Ontario, Canada, 
had studied group theory along the lines developed by Young and Robinson, and he had 
found some simple recit~s for c~culating the characters and the irreducible represen- 
tations of  the symmetrie group [ 11 ]. In the early 1960's, he made these recipes available 
to the quantum chemists by lecturing at the Summer Institutes in Quantum Chemistry 
and Solid-State Theory, held each year in Scandinavia, and one of  the consequences is 
weil illustrated by the following stocy: 

"One young American scientist, who had attended Coleman's lectures, 
was on a visit to a computer center in Califomia, which had recently had 
a new giant computer installed. In a practical demonstration of its abilities, 
the computer director proudly announced that it could calculate the 
characters of the symmetrie group up to faifly high orders by using a 
program bascd on Frobenius' •brmulas. The director and the visitor agreed 
on a specific order and a particular irreducible representation of the 
symmetrie group, and the computer staned its calculations. In the mean- 
time, the visitor picked up a used envelope and made some scratches on 
the back. After about ten minutes, the computer produced its results, the 
visitor looked at bis envelope and said: "Congratulations, it is correctF', 
after which he dropped the envelope into the waste paper basket, and the 
tour of the computer center continued. It has been said that, once the tour 
was finished, the computer director returned to the room with the waste 
paper basket, picked up the envelope, looked at the back for a few 
minutes, whereußm he picked up a gurt and shot either himself or the 
computer - I have forgoUen which." 

However, even if it is easy to calculate the characters and the irreducible repre- 
sentations of the symmetfic group according to Coleman's recipes, it is cenainly most 
valuable to have them systematically tabulated for the groups of lower orders, and I am 
looking forward to using the fine tables presented by Balasubramanian at this 
conference. 

The development of computer technology over the last decade has been almost 
unbelievable, going from scalar computers over vector computer« to supercomputers. 
Ken Wilson once said that, if you a rca  computer specialist and you do not follow the 
development in this field lor six months, most of  your kJaowledge is already obsolete. 
By means of supereomputers, one can now carry out C'.-GUGA calculations based on 
millions of configurations, and this is only the beginning. One has estimated that the 
supercomputers in comparison to the schar  computers have improved the efficiency of 
this number-crunching approach by about a factor of  100! At the same time, if one goes 
over to more sophisticated theoretical methods based, e.g. on resolvent techniques 
which require more analysis and less number-cmnching, one can most likely increase 
the efficiency of the scNar computers by a similar factor of  100. However, it is evident 
that it will take a rather long time before one can reach the combined efficiency increase 
of 10t7) x 100 = 10,000, due to the simple fact that many man-years have been invested 
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in the now existing computer programs, and that it will take a giant effort to move them 
from the scalar computers to the supercomputers. A most promising sign in this 
connecüon is that one has recently succeeded in condensing some of the Hartree-Fock 
programs originally constmcted for the supercomputers to the new personal computers 
which, with intemal memories of 1-2 megabytes and hard disks with memories of 
20-90 megabytes, have turned out to be very forceful and faifly inexpensive tools in 
theoretical chemistry. New horizons are certainly ot~ning quickly in the field of 
computaüons! 

Mathematical chemistry 

It is evident that the field of mathematical chemistry as we experience it at this 
conference is a particular branch of theoretical chemistry with a great deal of emphasis 
on topology, graph theory, group theory, and related subjects, which reflect the main 
interest of the founders of the Society of Mathematical Chemistry - the main sponsor 
of this conference. The field is probably best defined by Dennis Rouvray !n the editorial 
of the Journal of Mathematical Chemistry: "This discipline concems itseLf with the 
application of novel and nontrivial mathematics in a chemical context. Papers applying 
~any branch of mathematics to any area of chemistry, including biochemistry and 
chemical physics, will be considered." In the same way, since I would like to see more 
good mathematics in theoretical chemistry in general, I believe that I agree with 
Rouvray when he says that he wants more chemistry in mathematical chemistry. 

The organizers of this conference took care of this problem by devoting the entire 
last day to quantum chemistry. Of special interest in both quantum chemistry and solid- 
state theory is the Electron Density Functional Method (EDFM), which is based on a 
theorem by Hohenberg and Kohn [12] saying that the ground state of a Coulombic 
system under the influence of a one-electron potential v(x) is uniquely determined by 
its electron density p and that the energy E is a functional E = E[ t9] of the density p, 
provided that the lauer is v-representable. The first "explicit" form of this functional 
was given by Levy and Lieb, hut it assumes that one has solved the qJ-representability 
problem, i.e. that one is able to describe the entire family of wave functions W having 
the given density p [13]. Some current progress in this approach was reported here in 
the lectures by Mel Levy and Bob Parr. Some other aspects of quantum chemistry were 
also covered in lectures by Michael Zerner and Oktay Sinano~lu. 

Conclusion 

In conclusion, I would like to thank the local hosts at Texas A &M University in 
Galveston - particularly Doug Klein and Bill Seitz - not only for a fine banquet but for 
their excellent organization of the entire meeting. It has certainly been a most pleasant 
and scientifically valuable expefience! Finally, I am indebted to Doug Klein and Milan 
Randi6 for reading the preliminary version of this manuscript in advance, and for 
making some valuable criticisms. 
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